These are my links for May 4th through May 14th:
- [1005.1320] The myth of equidistribution for high-dimensional simulation – A pseudo-random number generator (RNG) might be used to generate w-bit random samples in d dimensions if the number of state bits is at least dw. Some RNGs perform better than others and the concept of equidistribution has been introduced in the literature in order to rank different RNGs. We define what it means for a RNG to be (d,w)-equidistributed, and then argue that (d,w)-equidistribution is not necessarily a desirable property.
- [1005.1327] Statistical Model Checking : An Overview – Quantitative properties of stochastic systems are usually specified in logics that allow one to compare the measure of executions satisfying certain temporal properties with thresholds. The model checking problem for stochastic systems with respect to such logics is typically solved by a numerical approach that iteratively computes (or approximates) the exact measure of paths satisfying relevant subformulas; the algorithms themselves depend on the class of systems being analyzed as well as the logic used for specifying the properties. Another approach to solve the model checking problem is to \emph{simulate} the system for finitely many runs, and use \emph{hypothesis testing} to infer whether the samples provide a \emph{statistical} evidence for the satisfaction or violation of the specification. In this short paper, we survey the statistical approach, and outline its main advantages in terms of efficiency, uniformity, and simplicity.
- Untangling the Quantum Entanglement Behind Photosynthesis: Berkeley scientists shine new light on green plant secrets « Berkeley Lab News Center – The future of clean green solar power may well hinge on scientists being able to unravel the mysteries of photosynthesis, the process by which green plants convert sunlight into electrochemical energy. To this end, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC), Berkeley have recorded the first observation and characterization of a critical physical phenomenon behind photosynthesis known as quantum entanglement.